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1 Introduction to Sparse Linear Regression

1.1 High-dimensional linear regression

Consider the following high-dimensional linear model, with y = Xθ∗ + w ∈ Rn, where

X ∈ Rn×d is the design matrix and y =

y1...
yn

 is the response. We write the design

matrix as

X =

x
>
1
...
y>n

 , xi ∈ Rd, i = 1, . . . , n

and the parameter as

θ∗ =

θ
∗
1
...
θ∗n

 .
We interpret

w =

w1

...
wn


as noise. We can also write the problem in the scalar form

yi = 〈xi, θ∗〉+ wi i = 1, . . . , n.

Our task is that we observe (X, y), and we want to estimate θ∗ ∈ Rd.
The classical asymptotic regime is that the dimension d is fixed, and the sample size n

is large. We will focus on the high dimensional regime, in which both d and n are large,
and d > n. In high dimensions, least squares will not give a consistent estimate. We need
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some further assumptions on θ∗ and X so that consistent estimation is possible in high
dimensions.

We will assume a sparcity assumption.

Definition 1.1. For θ∗ ∈ Rd, define the support as

S(θ∗) = {j ∈ [d] : θ∗j 6= 0}.

We will assume that |S(θ∗)| ≤ s. If S(θ∗) is known, then n ≥ s is enough for consistent
estimation. We can look at the least-squares problem

min
θS
‖y −XSθS‖22, where θS = (θi)i∈S ∈ R|S|,

XS =

x
>
1,S
...

x>n,S

 ∈ Rn×|S|, where xi,S = (xi,j)j∈S ∈ R|S|.

which will have a unique minimizer.
Because of this, we will focus on when S(θ∗). We will show that n ≥ s log(d/s). The

interesting regime for this problem is when s� n� d.

1.2 Recovery in the noiseless setting

In the noiseless setting, we have

y = Xθ∗ ∈ Rn, θ∗ ∈ Rd,

where θ∗ is s-sparse. Our task is to recover θ∗ given (X, y). If n < d, there will be infinite
solutions θ such that y = Xθ. The null space of X is

Null(X) := {∆ ∈ Rd : X∆ = 0}.

For all ∆ ∈ Null(X), θ = θ ∗ +∆ satisfies y = Xθ. The feasible space of y = Xθ is the
affine space θ∗ + Null(X) = {θ∗ + ∆ : ∆ ∈ Null(X)}. This gives infinitely many solutions.

To find θ∗, we can use `0-norm minimization:

min
θ:y=Xθ

‖θ‖0, ‖θ‖0 =
d∑
i=1

1{θi 6=0}.

However, this is computationally hard because this norm is not convex. To solve this
problem, we need to search over S ⊆ [d], where |S| is from 1, 2, . . . , s, and look at whether
there is a solution of y = XSθS . The complexity of this problem is

Θ

(
s−1∑
k=1

(
d

k

))
≈ ds,
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which is exponential in the sparsity. We would prefer polynomial complexity.
Instead, it is more efficient to consider the convex relaxation of `1-norm minimization:

min
y=Xθ

‖θ‖1 =
d∑
i=1

|θ|.

This problem was called basis pursuit in the original 1994 paper by Chen, Donoho, and
Saunders.1 If we consider the convex dual problem, then we get the LASSO problem, as
introduced by Tibshirani. This `1-norm minimization problem can be reformulated as a
linear program and solved efficiently.

Our question is as follows: What is the condition such that the solution

θ̂ := arg min
θ
{‖θ‖1 : y = Xθ}

equals the original θ∗?

1.3 A sufficient condition for exact recovery

Fix θ∗ ∈ Rd with S(θ) = s. We want some condition of X ∈ Rn×d such that

arg min
θ
{‖θ‖1 : Xθ∗ = Xθ} = θ∗.

Notice that Xθ∗ = Xθ means that θ ∈ Null(X) + θ∗, so this condition can be reformulated
as

∀θ ∈ θ∗ + Null(X) \ {θ∗}, ‖θ‖1 > ‖θ∗‖1.
When will this property hold?

Example 1.1. To gain some intuition, consider the case with d = 2, n = 1, and with
dim Null(X) = 1. Then θ∗ + Null(X) is an affine space passing through θ∗.

1This paper was not published until 1998.
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We can define the tangent cone

T (θ∗) := {∆ ∈ Rd : ‖θ∗ + t∆‖1 ≤ ‖θ∗‖1 for some t > 0}.

This enters the picture as follows.

We can see from the picture that we will not have exact recovery exactly when θ∗+Null(X)
intersects the tangent cone at more than one point.

We will get exact recovery when

θ∗ + Null(X) ∩ θ∗ + T (θ∗) = {θ∗},

which is equivalent to the condition

Null(X) ∩ T (θ∗) = {0}.

This is a necessary and sufficient condition for exact recovery.of θ∗. This condition involves
the interplay between properties of X and properties of θ∗.

Let’s see how to reformulate this tangent cone. In our example, d = 2, S = {2}, and
θ∗ = (0, 1)>. Then

T (θ∗) = {(∆1,∆2) : ∃t > 0, ‖(0, 1) + (t∆1 + ∆2)‖1 ≤ ‖(0, 1)‖1}
= {(∆1,∆2) : ∃t > 0, t|∆1|+ |1 + t∆2| ≤ 1}
= {(∆1,∆2) : |∆1| ≤ |∆2|,∆2 ≤ 0}.

In general, suppose S(θ∗) = S ⊆ [d]. Then we can express the tangent cone as

T (θ∗) = {∆ ∈ Rd : ‖∆Sc‖1 ≤ ‖∆S‖1,∆i, θ
∗
i ≤ 0∀i ∈ S}, ∆S = (∆i)i∈S ,∆Sc = (∆i)i∈Sc .
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Define the cone
C(S) := {∆ ∈ Rd : ‖∆Sc‖1 ≤ ‖∆S‖1}.

Then T (θ∗) ⊆ C(S) for any S(θ∗) = s. A sufficient condition for exact recovery is that

C(S) ∩Null(X) = {0}.

Definition 1.2. Let X ∈ Rn×d with S ⊆ [d]. We say taht X satisfies the restricted
nullspace property with respect to S (RN(S)) if

C(S) ∩Null(X) = {0}.

Theorem 1.1. The following are equivalent:

(a) For all θ∗ ∈ Rd with S(θ∗) = S,

arg min
θ
{‖θ‖1 : Xθ∗ = Xθ} = θ∗}.

(b) X satisfies the RN(S), i.e.

C(S) ∩Null(X) = {0}.

Earlier, we said that RN(S) was only a sufficient condition for exact recovery. But this
theorem says that it is necessary to have exact recovery for any θ∗ with S(θ∗) = S.

Proof. (b) =⇒ (a): Let θ̂ ∈ arg minθ{‖θ‖1 : Xθ∗ = Xθ}. Then ‖θ̂‖1 ≤ ‖θ̂∗‖1. Now
suppose we define ∆̂ = θ̂ − θ∗ ∈ Null(X); we want to show that ∆̂ ∈ C(S). Then we have

‖θ∗S‖1 = ‖θ∗1‖

≥ ‖θ∗ + ∆̂‖1
= ‖θ∗S + ∆̂S‖1 + ‖ θ∗Sc︸︷︷︸

=0

+∆̂Sc‖1

Using the triangle inequality,

≥ ‖θ∗S‖1 − ‖∆̂S‖1 + ‖∆̂Sc‖1.

Cancelling ‖θ∗S‖1 on both sides, we get ‖∆̂Sc‖1 ≤ ‖∆̂S‖. That is, ∆̂ ∈ C(S)∩Null(X). By

our assumption, this means ∆̂ = 0, so θ̂ = θ∗.
(a) =⇒ (b): Let θ̃ ∈ Null(X) \ {0}. We want to construct a θ∗ so that to recover θ∗,

we need RN(S). We will not prove this direction because it is mostly more algebra.

What are examples of matrices satisfying RN(S)? For a random matrix X ∈ Rn×d with

Xi,j
iid∼ N(0, 1), RN(S) is satisfied with high probability as long as n & s log(d/s). This is

one of the main components of compressed sensing. If you want to estimate a sparse
signal, you can apply a random matrix and solve this `1 minimization problem.
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